Reparatie van Williams system 3 t/m 7 flipperkasten van 19 77 tot 1984, Deel 1Deze pagina is tot
stand gekomen door het aanleveren van technische informatie van duizenden
flipperkastliefhebbers en techneuten over de hele wereld. Vertaling,
correctie en herschreven in 2011.
Op deze pagina's wordt beschreven hoe je de storingen
in een electronische Williams
Flipperkast kunt repareren. Het betreft de machines gebouwd vanaf 1977 (Hot Tip)
tot 1984 (Laser Cue) Onze bijzondere dank
gaat vooral uit naar Leon Borré voor het schrijven van testsoftware waarmee het
opsporen van fouten in deze kasten van bijna onmogelijk tot een eenvoudige klus
is teruggebracht. BELANGRIJK: Voordat je er aan begint ! Durf je toe te geven dat je het
echt niet kunt (heel verstandig) dan kun je terecht bij de Flipperwinkel
in Arnhem die gespecialiseerd is in het repareren van deze printen.. Inhoud: 1.
Het
begin 2. Lees
voordat je de kast aanzet eerst DIT
3. Als
de boel 't niet wil doen:
|
1a. Het begin: Ervaring en schema's Moet je nou echt elektronicus zijn of kan iedereen dit? Allemaal beetjes dus, al doende leert u de fijne kneepjes wel. Schema's zijn wel handig als je bezig bent met een reparatie, op
de Internet Pinball Database (www.ipdb.org)
staat zo ongeveer alles wat je altijd al wilde weten over flipperkasten maar
niet durfde vragen :-) 1b. Gereedschap
In mijn winkel Flipperwinkel.nl heb ik de meeste zoniet alle zaken wel voor u liggen. Benodigd standaard gereedschap: Speciaal gereedschap: * Een oscilloscoop is voor de prille beginner op het eerste gezicht een chaos
van onbegrijpelijke knopjes rond een beeldschermpje, vandaar ook dat ze zo
populair waren in oude SF films, stapel 30 van die ouwe krengen op en je hebt
het decor voor je ruimteschip al klaar :-) Een goede Logic Probe kost meer dan een goeje ouwe scoop. Wilt u nog niet aan de scoop?
Schoonmaakspullen: 1c. Onderdelen die je bij de hand moet hebben Als je een elektronisch bestuurde flipperkast gaat repareren heb je zo af en toe ook onderdeeltjes nodig voor, erg lastig als je die tijdens het knutselen niet bij de hand heb dus neem van de onderstaande lijst het nodige op voorraad. Mijn sterrensysteem geeft aan of u het onderdeel vaak, minder of zelden nodig heeft. 1 Ster heeft u
zelden nodig.
Andere zaken: Alles is uit voorraad leverbaar bij de onderdelenspecialist www.flipperwinkel.nl 1d. Overzicht van de kasten en "generaties"
Controleer even tot welke generatie uw flipperkast behoort voordat u onderdelen gaat inkopen want er best wel enige verschillen. Verder kunt u de naam van uw kast aanklikken om een nieuw venster te openen naar de Internet Pinball Database waar ook veel informatie over uw kast staat en vaak u ook het handboek en de schema's kunt downloaden. Williams System 1 (experimenteel en heeft nooit de fabriek verlatenl) Williams System 2 (experimenteel en heeft nooit de fabriek verlatenl) Williams System 3 Williams System 4 Williams System 5
Williams System 6
Williams System 7
Williams System 8 (Wordt hier niet besproken)
Williams System 9 (Wordt hier niet besproken) 1e. De verschillende generaties printen.
Williams introduceerde hun eerste solidstate flipperkast eind 1977, De
flipperkast "Hot Tip" werd ook nog beperkt geproduceerd als
elektromechanische kast. Verwijzen naar deze flippers van 1977 tot 1984 wordt vaak gedaan door ze
te benoemen naar hun revisielevel, een Black Knight wordt bijvoorveeld een sys7
kast genoemd.
Er is helaas ook geen informatie meer bekend over de gebruikte techniek.
System 3
System 4 Er zit bij system 4 ook een extra IC voet op positie IC26 net onder de
batterijhouder die net als bij system 3 links midden net boven de roms zit.
System 4 CPU borden kunnen zowel system 3 als system 4 software draaien en
bovendien de meeste system 6 software, system 7 software kan echter niet op
"lagere" borden worden gedraaid omdat deze software "op zoek
gaat" naar de tweede PIA op het CPU bord. Er schijnt ook nog een "system 4- bord" te bestaan, het is gelijk aan een normaal system 4 bord maar de IC voeten op positie IC26 en IC14 werden niet geplaatst.
System 5
System 6 System 6 CPU borden werden geïnstalleerd in Flash (aan het eind van de productie), Tri-Zone, Time Warp, Gorgar en Laserball.
System 6a
System 7 Met betrekken tot Hyperball: Het processorbord hiervan is gelijk aan alle andere system 7 printen, dit gaat ook op voor de voeding en de displays, de jumpers staan echter anders maar het grootste verschil zit in een speciaal driverbord wat uitsluitend in Hyperball werd gebruikt en niet geschikt is voor enige andere flipperkast. ------------------------------------------------------------------------------
Flipper ROMs. Oorspronkelijke dachten we dat ze naam "Flipper ROM's s" hadden
gekregen om ze te onderscheiden van bijvoorbeeld "Shuffle ROM's". De Flipper ROM's werden onderscheiden door een kleurcode: White, Yellow,
Green en Blue. De kleuren hoorden min of meer bij de verschillende systemen (er
was enige overlap en ook een uitzondering) Een processorbord bevat altijd 2 Flipperroms op posities IC17 en IC20,
dit kunnen 2716 eproms zijn of 2316 masked ROMs, alleen bij system 7 werd er een
2532 eprom gebruikt in IC17. Vervangen van ROM's Wat werkt er nou met welke systeemgeneratie samen?
Het Williams 3 tot en met 6 printontwerp. Williams en enkele andere fabrikanten gebruiken een zogenaamd split board
ontwerp, hierbij werden functies gescheiden en op verschillende printplaten
gezet om de reparatie op lokatie te vereenvoudigen. Een monteur hoefde in zo'n
geval slechts de defecte print uit te wisselen en vervolgens mee te nemen naar
de reparatiewerkplaats. Hierbij speelde de gedachte dat een driverbord veel
vaker kapot zou gaan dan een CPU bord een grote rol, het veel ingewikkeldere
processordeel had immers nauwelijks te lijden terwijl het driverbord met zijn
eindtransistoren dat wel degelijk had. Dit idee bleek bewaarheid, mettertijd bleken de driverborden inderdaad
veel vaker kapot te gaan dan de CPU borden. Wat Williams en andere fabrikanten
echter over het hoofd zagen was het toenemen van het aantal connectorproblemen
naarmate de flipperkasten ouder werden. Bij Gottlieb ontstonden de meeste
problemen doordat ze gebruik hadden gemaakt van Homecomputer Side Edge
connectoren die gevoelig bleken voor lage contactdruk en geoxideerde
printsporen. Williams daarentegen ondervond ernstige problemen door het gebruik
van de beruchte interboardconnector waar de volledige data- en adresbus doorheen
liepen, erger nog, ook het blankingsignaal liep door de connector en dat ook nog
eens precies onder de batterijen bij system 3 -4 en vooral -7, het minste beetje
batterijlekkage zorgde al meteen voor het uitvallen van de blanking. Maar goed, alles kasten delen hetzelfde basisontwerp met 5 printen: Een
CPU bord, een driverbord, een voeding, een displaydriver en de displays zelf. Alle system 3 en de meeste system 4 kasten hadden het soundbord onderin
de kast zitten, in feite was het een directe vervanger van de vroegere bellen
die daar zaten (het soundbord werd ook aangestuurd door dezelfde transistoren
die vroeger de spoelen van de bellen lieten aantrekken).
Het CPU (Central Processing Unit) Bord
Het driverbord is in feite gewoon een onderdeel van het CPU bord. De "driver" is verantwoordelijk voor de controle over spoelen en lampen en leest bovendien bijna alle switches uit. De microprocessor in deze flipperkasten communiceert met de rest van de gebruikte onderdelen(randapparatuur) via een stel PIA's(Peripheral Interface Adapter). Deze IC's zijn van het type 6821, (op de oudste borden tref je ook nog wel eens de voorloper 6820 aan die gewoon uitwisselbaar is met de 6821). In een Personal Computer zijn voorbeelden van randapparatuur het toetsenbord, de diskdrive/harddisk, een modem, monitor enz. In een flipperkast bestaat de randapparatuur uit spoelen die de bal over het speelveld laten rollen, contacten die "zien" waar die bal tegenaan rolt en de displays waar u de score vanaf kunt lezen. Een PIA heeft binnen de computerarchitectuur een "adres", net zoals een RAM geheugen of EPROM dat heeft en wordt beschreven of gelezen door de microprocessor. De software van de flipperkast laat de microprocessor de PIA lezen of beschrijven, op deze manier wordt geregistreerd dat een bepaalde switch op een bepaald moment wordt gesloten of dat een bepaalde spoel moet worden bekrachtigd. Ook het tonen van de scores op de displays wordt op deze manier bewerkstelligd. Een PIA van het type 6821 heeft 16 in- of uitgangen plus nog een tweetal extra lijntjes die vrij bestuurbaar zijn. De functie van een PIA's is redelijk vrij programmeerbaar, er kan worden ingesteld dat de 16 IO lijnen allemaal ingangen zijn, of allemaal uitgangen, of 8 in- en 8 uitgangen. De "drivers" die in system 3 t/m 7 kasten werden gebruikt zijn
bijna helemaal gelijk, alleen de switchmatrixweerstanden verschillen tussen de
diverse generaties. System 3 driverborden hadden 1000 ohm switchmatrixweerstanden
op positie R204-R211, latere drivers hadden daar 330 ohm weerstanden zitten en
vanaf system 7 waren het 0 ohm draadbruggen of 0 ohm "weerstanden".
Op het driverbord zitten de overige drie PIA's, een is verantwoordelijk voor het aansturen van de spoelen, de volgende stuurt de lampjes aan en de derde tenslotte is verantwoordelijk voor het uitsturen van 8 switchkolommen en tevens het uitlezen van de 8 switch rijen. PIA's worden door de microprocessor in feite gewoon als RAM geheugens gezien en zodra een PIA defect raakt en dus niet meer door de processor kan worden gelezen of beschreven zal deze vastlopen, of wat vaker voorkomt, in een oneindige wachtlus terechtkomen. Om deze reden zal een CPU bord ook niet willen starten (booten) zonder dat het driverbord is aangekoppeld. Slechts dankzij de testeprom van Leon is het vandaag de dag mogelijk om een CPU bord zonder aangekoppelde driver op de werkbank te testen. De PIA's zijn makkelijk herkenbaar omdat het de grote 40 pens IC's zijn, geen zorgen als er niet 6821 op staat maar iets totaal anders, Williams (en Bally ook) kosten deze IC's in dermate grote hoeveelheden dat deze speciaal voor hen werden geproduceerd onder een eigen nummering: Een PIA's is beslist niet in staat om rechtstreeks een spoel of lamp aan te
sturen, de hiervoor benodigde elektrische stroom is veel te groot en kan niet
door de uitgangen van een PIA worden geleverd. De voeding
De grote condensator die we ook wel "Big Blue" noemen staat er op de bodem van de kop vlakbij en dient voor het afvlakken van de gelijkspanning voor de lampmatrix. Een ander verwarrend deel van de voeding is de ongestabiliseerde 12volt. Ten eerste noemt Williams dit de ongestabiliseerde 5 volt terwijl het gewoon echt 12 volt is die echter door het ontbreken van een stabilisator ergens tussen de 10 en 14 volt zweeft en ter plekke van de voedingsconnector op het CPU bord zelfs nog lager. Door het stijgen van de netspanning in europa (220volt is 230 geworden) zal deze spanning ook wat hoger uitvallen, dit is geen enkel probleem overigens maar trap er niet in om een reparatie te willen uitvoeren omdat deze spanning wat lager of hoger is.
Het soundbord (geluidsbord).
Vanaf World Cup (system 3) t/m Pokerino (system 4) werd er een soundbordje
gebruikt wat geluiden maakte zodra de speler ergens iets scoorde, dus net als
bij een kast met bellen, de rest van de tijd was het gewoon stil(een paar van de
allereerste World
Cup's hadden trouwens nog bellen). Met de komst van Gorgar (system 6) werd de spraak geïntroduceerd in de wereld van de flipperkast. Een totaal nieuw ontworpen soundbord met een aangekoppeld printje waar de soundsamples in eprom op zaten zorgde voor een vocabulaire van zeven woorden waarmee Gorgar vriend en vijand (en concurrent) versteld deed staan(of de stuipen op het lijf joeg met de griezelige gesamplede hartslag die de kast produceerde). Dit type soundbord werd tot het eind van de serie gebruikt alhoewel het spraakbordje verviel na de productie van Pharaoh, Gorgar, Firepower, Blackout, Alien Poker, Jungle Lord en Pharoah waren de enige pratende kasten en door de afnemende vraag naar flipperkasten werd er overal bezuinigd op de gebruikte onderdelen dus spraak verviel ook. Solar Fire en alle latere kasten hadden nog wel hetzelfde soundbordje maar zonder de connector voor het spraakbord, spraak was dus zelfs geen optie meer. Het aansturen van het soundbord gebeurde vanaf Black Knight niet meer met de transistoren voor de bellen op het driverbord maar vanaf een aparte uitgang (en extra PIA) op het CPU bord. Gevolg hiervan was dat er een aantal transistoren vrijkwamen voor het besturen van spoelen zodat de kasten weer verder konden worden uitgebreid.
Williams gebruikte standaard verkrijgbare zes digit gasgevulde displays in bijna alle system 3 t/m 6 kasten, dit type display is vandaag de dag nog altijd verkrijgbaar hoewel de prijs van een LED display langzaam zakt en de gasdisplays steeds duurder worden. Mocht je een nieuw display willen monteren bedenk dan dat alle vervangingsdisplays tegenwoordig een glazen nippel aan de achterkant hebben terwijl lang niet alle printjes een gat hiervoor hebben, dit kan montage behoorlijk problematisch maken. Alle system 7 kasten en de laatste 2 system 6 kasten (Alien Poker en Algar) hebben 7 digit displays. Gezien de zeer hoge prijzen van originele gasdisplays is het echter al snel lonend om een setje LED displays aan te schaffen. Er zijn op dit moment 2 leveranciers van LED displays, in Duitsland is dat Pinled en in de USA is dat Pinscore. Beide displays werken prima in de kasten, die van Pinscore zijn echter beduidend mooier maar helaas ook een flink stuk duurder. De displays van Pinled zijn veel te fel en u moet er een folie bij aanschaffen (vreemd genoeg tegen meerprijs) om deze ontwerpfout te corrigeren. Helaas zijn er ook bepaalde handelaren in oude voorraden die displays aan de man brengen als zijnde nieuw, deze displays met prijzen van 25 euro en lager hebben meestal al 30 jaar of langer opgeslagen gelegen, ze zullen na montage meestal nog enkele maanden werken waarna u weer van voor af aan kunt beginnen.
Het master displaybord(system 3/6) of display driver bord(system 6a/7) Er zijn twee versies van het master display bord, heowel versie één zowel met IC's als losse transistoren is gebouwd dus in feite zijn er drie versies. Alle uitvoeringen van het bordje zijn uitwisselbaar binnen dezelfde generaties.
Het Williams system 7 CPU bord
Later tijdens de system 7 productie is de "backwards compatibilteit"
langzaam aan het verdwijnen door het weglaten van de dipswitches en de Ledjes. Williams
ontdekte waarschijnlijk dat er geen gebruik meer van werd gemaakt omdat de
system 3-6 kasten intussen waren uitgeëxploiteerd, men kon dus een
kostenbesparing doorvoeren. Het aantal beschikbare spoelen in system 3 t/m 7 flipperkasten| Met de komst van system 7 ging het aantal spoelen wat op het speelveld
kon worden ingezet nog eens omhoog omdat de vijf uitgangen voor de bellen nu
vrijkwamen door de komst van een extra PIA op het CPU bord die deze taak
overnam. De nieuwe PIA had trouwens ook nog 2 uitgangen over voor spoel 23 en 24
die nooit gebruikt zijn, in de "Blue" Flipperroms zitten er zelfs
testroutines voor, de betreffende uitgangen lopen op de print naar de niet
gemonteerde dubbelrijïge connector op de rechterzijde van de print. Of het de
bedoeling was om een expansionboard zoals in Twilight Zone toe te passen of dat
men een nieuw ontwerp voor een driverbord in gedachten had (aangestuurd via een
flatcable dus zonder de interboard connector) is nooit bekend geworden. |
2a. Belangrijk, lees eerst dit verhaal over het opbouwen van de kasten en de zwarte en witte connectoren voordat je de kast aanzet.
Dit is een zeer kritische verbinding dus let goed op hoe je de stekkers in elkaar steekt. Williams heeft helaas de stommiteit begaan om connectoren te kiezen die foutief in elkaar gestoken kunnen worden, ze hebben gewoon dezelfde vorm en kunnen alleen door hun kleur worden onderscheiden, niet allemaal trouwens maar bij alle kasten is er tenminste één stel wat verwisseld kan worden. Je treft in deze kasten dan ook een paar zwarte en een paar witte connectoren aan die verwisselbaar zijn. De bedoeling is natuurlijk dat ZWART OP ZWART en WIT OP WIT wordt gestoken maar let goed op. DE DRAADKLEUREN MOETEN OOK KLOPPEN. Zoals bij ieder bedrijf werd er bij de productie van Williams ook geblunderd, kijk dus allereerst of de draadkleuren ook juist bij elkaar uitkomen! Het verkeerd aansluiten van deze connectoren heeft als gevolg dat er grote schade ontstaat aan de elektronica van de kast, de 28volt voor de spoelen komt op de 5volt voor de microprocessor en zijn randcomponenten te staan, diverse IC's op het bord zullen dan ook onmiddellijk goed gaar worden geroosterd.
Mocht het toch gebeuren dat iemand de connectoren verkeerd in elkaar steekt en de kast aanzet dan hier een voorbeeld van wat er kan gebeuren (Als voorbeeld nemen we een Black Knight) Wat er precies aan gort wordt geblazen is afhankelijk van de kast en de tijd dat deze heeft aangestaan. De onderstaande zaken waren duidelijk meteen herkenbaar: In het voorbeeld van onze Black Knight waren deze zaken kapot of nog heel: Hoe dan ook, voorkomen is beter dan genezen dus let eventjes goed op bij het monteren van die zwarte en witte stekkers. Losse of afgebroken connectordraden. Vergeet de aarddraad niet. 2b. Nog even wachten met aanzetten: Controleer de spoelen en vervang alle diodes.
Allereerst open je de kopkast en verwijder je alle connectoren aan de linkerkant van het driverbord. Dan til je het speelveld op en bekijk je een willekeurige spoel maar geen flipperspoel. Bij iedere spoel zie je een diode over de soldeerlippen zitten. Kijk hoe de diode gemonteerd zit (één kant is gemerkt met een streepje) en knip hem weg. Vervolgens pak je je multimeter en meet de weerstand van de spoel, is deze tenminste 2,5 Ohm dan is de spoel waarschijnlijk in orde. Soldeer tenslotte een nieuwe diode over de soldeerlippen van het type 1N4007 (de opvolger van de 1N4004) TECHNISCHE ACHTERGROND: Als een spoel te lang aangetrokken heeft gestaan (meestal veroorzaakt door een kapotte drivertransistor) dan is deze verbrand en heeft een veel te lage inwendige weerstand, dat komt omdat het wikkeldraad geïsoleerd is met lak die bij oververhitting verbrand, hierdoor komen de wikkelingen vervolgens elektrisch in contact met elkaar en de weerstand van de spoel zakt een stukje waardoor er nog meer stroom gaat lopen, de spoel nog heter wordt en tenslotte totaal verbrandt en de zekering doorslaat. Als je een transistor op het driverbord vervangt en vervolgens de kast
inschakelt terwijl de volledig kortgesloten spoel nog altijd is aangesloten zal
de nieuwe transistor onmiddellijk worden vernield. Het meten van de weerstand met de multimeter: Als je vergeten bent in welke richting de diode op de spoel zat.......... Als je ergens een spoel met een te lage weerstand aantreft dan moet je dus ook ALTIJD de bijhorende stuurtransistor vervangen.
Nieuwe spoelen zijn voorzien van een nieuwe diode, let er zelf op dat je de
bedrading goed aansluit want de richting waarin de spoelenfabrikant de diode
plaatst is niet altijd gelijk aan de originele richting, in zo'n geval moet je
de draden dus omwisselen. 2c. Nog steeds niet aanzetten maar eerst de voeding controleren, repareren, verbeteren enz. En uiteraard gaan we ook nu de zekeringen nazien.
Na alles wat je hierboven hebt gelezen en hopelijk ook hebt gedaan wordt het
tijd om de voeding te controleren op goede werking. Waarom gaat het verhaal hier nu opeens verder over de zekeringen terwijl er eerst sprake was van het controleren van de powersupply?
What if the game Locks-Up or "Resets"?
What Voltages does the Power Supply Output? The power supply board takes in 18.6 volts AC (9.3 volts AC times two) from the transformer, and outputs +12 volts DC, and +5 volts DC. In addition it takes in 90 volts AC from the transformer and outputs +/- 100 volts DC. The unregulated 28 volts DC for the solenoids and the 18 volts DC for the lamp matrix power actually does not use the power supply board (this is handled by the backbox mounted bridge rectifiers and filter capacitor). But these two voltages do go through the power supply board for fusing, but neither is manipulated or altered. On System7 power supplies, 6.3 volts AC also comes into the power supply board, but only to provide a fuse and a G.I relay to the circuit (there are three additional connectors on a system7 power supply for GI input and output, and for control of the GI relay). Also note that the Sound Board has its own dedicated power supply. So if the sound is not working, don't mess with the game's main power supply. Early power supplies (first two system3 games, Hot Tip and Lucky Seven) also routed the G.I. through the power supply board, and contained a 300 volt feed for the display driver that was later dropped. All power supplies boards from System3 to System7 are interchangeable (except for maybe the first two system3 game power supplies which used the 300 volt feed and GI power supply connector). Transformers on earlier games also used slightly different plug arrangements. Hot Tip/Lucky Seven and System7 games routed the GI power through the power supply board. System3 (World Cup and later) to System6 games had direct connections to the fuse card for the GI circuit. If swapping transformers, make sure the GI power is routed properly through the fuse card or power supply, as dictated by the game in question. Also the last three System7 games (Firepower2, LaserCue, Starlight) used 50 volt flipper coils (compared to the rest of the 28 volt game coils), so these trasformers are different too.
Fuses. System3 and 4 games (all games through Flash) do not have the fuse for the Flipper power on the power supply. Instead the fuse is located under the playfield near the flippers. Fuse holder F4 is present on the power supply on these games, but the circuit isn't used on games from World Cup through Flash, so fuse F4 can be removed. Likewise on the last three System7 games (Firepower2, LaserCue, Starlight); these games used 50 volt flipper coils, and had a separate 50 volt power supply board for the flippers. The F4 power supply fuse is therefore not used (instead the 50 volt flipper power supply board has a F2 fuse 5amp slow blow). The first two System3 games from Williams (Hot Tip and Lucky Seven) use F4 as the GI fuse. These games routed the GI power through Power Supply board and the .156" connectors. The photo below shows the GI connector from a Hot Tip and the associated burn marks on the connector. Williams smartly removed the GI from the Power Supply board by World Cup, but had a lapse of judgment and put it back onto the Power Supply board in System7 games (because the power supply board also got a G.I. relay), albeit with a larger Molex connector, but the same burnt connector results.
Main fuse: All system3 to system7 games use a main fuse of 7.5 amp fast blow in the front of the cabinet (accessed through the coin door). System 3 Fuses.
Sound Board Fuses (except Hot Tip & Lucky Seven): Backbox Panel Fuses (located below power supply board): Playfield Fuse (located under playfield): Power Supply Bridges (located on power supply board):
Backbox Bridges (located below power supply board, 35 amp, 400 volts):
Sound Board Fuses: Backbox Panel Fuses (located below power supply board): Playfield Fuse (located under playfield): Power Supply Bridges (located on power supply board):
Backbox Bridges (located below power supply board, 35 amp, 00 volts):
Sound Board Fuses: Backbox Panel Fuses (located below power supply board on a fuse card): No playfield fuses, as the fuse F4 on the power supply board is now used for the flippers. Power Supply Bridges (located on power supply board):
Backbox Bridges (located below power supply board, 35 amp, 400 volts):
Flipper Power Supply (Firepower2, LaserCue, Starlight ONLY): Sound Board Fuses: Backbox Panel Fuses:
No playfield fuses, as the flipper fuse F4 is now on the power supply board or the flipper power supply board. Power Supply Bridges (located on power supply board, 35 amp, 400 volts): Backbox Bridges (located below power supply board, 35 amp, 400 volts):
Diagnosing a Blown Solenoid Fuse.
Het bijplaatsen van 2 zekeringen in een system 3 t/m system 7 kast. De betreffende twee bruggelijkrichters zitten tegen achterwand van de
kopkast geschroefd en dienen voor de spanning van de lampmatrix en de spoelen.
Testing a Bridge Rectifier.
The Varistor and AC Line Filter.
Cracked Header Pins. The best way to fix this is to resolder the header pins. NOTE: it is *highly* recommended that the old solder be removed, before adding new solder! This can be done using a solder removal tool, as documented in the document at marvin3m.com/begin. Also look for any damaged or burnt header pins. Replace them now if any are found!
(Component #3 in the "key" picture.) This is the +12 and +5 volt logic filter capacitor. Electrolytic capacitors have a working life of about 10 years. So if this capacitor is original, chances are nearly 100% that this capacitor needs to be replaced! On System3 to System6 games, this is a 12,000 mfd 20 volt electrolytic capacitor. On System7 games, this is a 18,000 mfd 20 volt electrolytic cap. Failure to replace this +5/12 volt filter cap will can cause all sorts of unpredictable game behavior and problems. Game resets and lock ups are most common. THIS CAPACITOR MUST BE REPLACED ON ALL SYSTEM3 TO SYSTEM6 GAMES! Also a darn good idea on system7 games too. On system3 to system6 power supplies, the +12/+5 volt power is rectified by *two* diodes. This is unlike system7 or just about any other pinball manufacturer which use a bridge rectifier (four diodes) for the 5/12 volt power chain. Using just two diodes gives "half wave" rectification. Using a bridge rectifier with four diodes gives "full wave" rectification. What does this mean? In the case of half wave rectification (two diodes) as used on system3 to system6 power supplies, the filter capactior has to work much harder to give smooth +5 volts. Because of this it is *very* important to have a new +5/12 volt filter capacitor on the power supply board for system3 to system6 games. Any new capacitor in the 10,000 mfd to 18,000 mfd range (16 volts or higher) is fine. Note on Williams system3 to system7 games with more than two flippers, a higher MFD filter cap will be required! For example any Willams system3 to system7 game with three or four flippers should have a 15,000 MFD filter capacitor. Anything less and the game will reset if both cabinet flipper buttons are pressed at the same time. Often many techs will measure the amount of AC voltage coming through on the DC 5/12 volt circuit. This is done with a digital multimeter (DMM) set to low AC volts, putting the DMM's leads on the two leads of the 5/12 volt filter capacitor. Normally anything above .200 volts AC means the 5/12 volt filter capacitor is bad. But on system3 to system6 games, because of the two diode half wave rectification, it is nearly impossible to get less than .200 volts AC even with a new filter capacitor. Just keep that in mind. On system7 games a new 15,000 MFD filter cap should put the AC ripple at .100 to .200 volts AC, which is fine. Note all newer capacitors (of the same value) are smaller than the original capacitor. Original style 15,000 or 18,000 mfd axial electrolytic capacitors are not easy to find. An easier to find replacement, currently available from many sources, are radial "Snap Caps". To install one, the snap cap will need to be siliconed (and if possible nylon tie wrapped) to the power supply board, and have wires going from its terminals to the power supply board. Not the cleanest look, but it does work well. Be sure to mount the cap "flat" to the power supply board, with the cap leads facing *down*. DO NOT MOUNT THE CAP WITH THE LEADS FACING OUT (away from the power supply board). Due to the vibration in pinball machines, the silicone used to secure the cap will eventually fail if the "tall" cap is mounted with the leads facing "out". Another method is to use a snap cap and drill a hole in the board for the second cap lead. This method is NOT recommended! Again, due to vibration, the solder leads will crack, removing the capacitor from the circuit.
Adding these fuse can is a good idea, and could prevent a fire. This applies to all System3 to System7 games. Please see above for this information.
Upgrade 3: Replace Connector at 3J6.
(Component #4 in the "key" picture.) On System3 to System6 power supplies only, the diodes at D7 and D8 need to be replaced. These two diodes rectify the AC voltage to DC, which is ultimately used for the +12 volts and +5 volts logic. The MR500 diodes are 3 amp diodes, but should be replaced with 6A4 (6 amp, 400 volts) diodes, or 6A2 (6 amp, 200 volts), or even 6A50 (6 amp, 50 volts). Radio Shack sells 6A50 diodes, part number 276-1661. Note on System7 power supplies the AC to DC conversion circuit was beefed up. Diodes D7 and D8 were eliminated, and replaced with a bridge rectifier BR1. A bridge rectifier is essentially a grouped set of four diodes.
(Components #1 in the "key" picture.) Power supply zener diodes Z2 and Z4 are 1N4764 diodes, which are 100 volt diodes. These should be replaced with 1N4763 diodes, which are 91 volt diodes on all System3 to System7 power supplies. The reason for this is simple; the 91 volt diodes increase score display life. This decreases the score display voltage from 100 volts to 91 volts, making the score display last a lot longer. Since score diplays are now only made by one manufacturer, it is important to make them last as long as possible. The downside to this modification is the score displays will be a bit dimmer. But the added life of the displays is worth it.
(Components #1 in the "key" picture.) Williams recommend upgrading resistors R2 and R5 from 680 ohms to 1.2K ohm 1/2 watt resistors for better reliability of the high voltage section. Also it's a good idea to at least check resistors R1 and R4, 39k ohms. Replace as needed with new 39k ohm 1 watt flameproof resistors. This applies to all System3 to System7 power supplies.
Upgrade 7: Check Connector 3J3.
Upgrade 8: (System7) Replace the G.I. Connectors.
To do this, disconnect *all* the connectors from the power supply, except for 3J1 and 3J2 (these are the two square connectors). J1 is a rectangle 12 pin connector, which feeds all the input voltages to the power supply. J2 is a rectangle 6 pin connector, which feeds ground from the external bridge rectifiers. All the other .156" straight line connectors are output connectors, and should be removed.
With all the connectors removed except for J1 and J2, turn the game on. Measure the +12 volts DC with a DMM at 3J6 pin 6 (pins 11 to 15 of J6 are ground). This is unregulated 12 volts, so it should be in the 10 volts to 14 volts DC range. If the voltage is outside that range, most likely it is the filter capacitor (C15 12,000 mfd at 20 volts for system3 to system6, or C10 18,000 at 20 volts mfd for system7). This capacitor commonly fails on these power supplies. There is more information on this capacitor below (see the +5 Volt Logic Filter Capacitor.) Beyond the capacitor, on system3 to system6 games, it could be either diodes D7 or D8 (MR500, which should have been replaced with 6A4 diodes, as discussed above). These diodes commonly fail due to heat. These diodes can be easily tested using a DMM set to the diode function. Put the DMM leads on each lead of the diode, and a reading of .4 to .6 volts should be seen in one direction, and no voltage in the other. On system7 games, the BR1 bridge rectifier (35 amps 400 volts) could be faulty. Lastly the problem could be the transformer (but that is unlikely). Testing this bridge rectifier is described below in the +5 volts section.
Check the +5 Volt Logic Voltage. To check the +5 volts, use a DMM and measure the +5 volts DC at power supply connector 3J6 pins 7 to 10 (remember J6 pins 11 to 15 are ground). The +5 volts should measure between 4.9 and 5.2 volts DC. If the +5 volts is low at the power supply, either the connectors are in bad shape, or the regulation circuit is probably damaged. If the voltage is Ok at the power supply, but is later tested at the CPU board and found to be less than 4.9 volts, the CPU board could also have some problems that are "dragging down" the power supply. There could also be a problem on the power supply +5 volt regulation circuit, which fails "under load". But first check and replace the connectors on the power supply (3J6) and the CPU board (1J2) before doing anything else. Fixing a bad +5 volt circuit is pretty straight forward. On System3 to System6 games, this involves the large heat sinked X3 (LM323, 3 amp, 5 volts) voltage regulator on the power supply board, and two diodes at D7 and D8. The voltage regulator itself is pretty well protected and doesn't usually fail. As described above, diodes D7/D8 do often fail though. A shorted D7/D8 diode should blow a fuse, an open diode causes +5V voltage to drop and prevent the game from starting. These can be easily tested using a DMM set to the diode function. Put the DMM leads on each lead of the diode, and a reading of .4 to .6 volts should be seen in one direction, and no voltage in the other. On System7 power supplies, low or no +5 volts is either the bridge rectifier BR1, chip IC1 (723PC), or transistor Q5 (2N6057, which should be replaced with an easier to get 2N6059). The bridge rectifier BR1 (35 amps 400 volts, which is really four diodes in a metal case) is used to convert AC to DC volts, and replaces the D7/D8 diodes on older System3-6 power supplies. The System7 BR1 bridge can be tested. Note the positive side of the bridge is "offset" from the other three leads, with the lug facing a different direction than the other three lugs. The negative lug is diagonial to the positive lug. And the two AC lugs are the two remaining lugs.
Check the High Voltage +/-100 volts. With the connectors on, if the score displays are dead, before repairing the High Voltage supply, look for a small orange glow in the corner of the score displays. If that is present, then the proper voltages are probably getting to the displays, and the problem lies elsewhere, other than the high voltage section. If the score displays light up, but then go dim or flicker, try replacing the two 100 mfd 150 volt electrolytic filter capacitors in the high voltage section (C7/C11 on System3-6, C1/C3 on System7). When those capacitors dry up and get old, the displays can look like they are dying. Also part of the high voltage section on the first two System3 games (Hot Tip and Lucky Seven) is a 300 volt supply circuit. The original design used this voltage to provide an extra "kick" to get the score displays gas to ionize. Hot Tip and Lucky Seven used this extra voltage, but it was deemed unnecessary after that and dropped. If a System3 power supply has some extra capacitors and diodes that aren't on the schematic, this is part of the 300 volt supply. The 300 volts was produced using two diodes and two capacitors to triple the incoming AC voltage. If a System3 power supply has a failed 300 volt supply, there is no need to repair it. The two extra diodes and capacitor can be removed, and this will not affect the score displays.
Check the Lamp Voltage.
Check the Solenoid Voltage. The flipper voltage has a slight deviation. On System3 and System4 games, +28 volts goes directly to the flippers from the solenoid bridge rectifier (there is a fuse located under the playfield). On System6 and System7 games, the flipper voltage is goes through the Power Supply board (but is not manipulated), with fuse F4 protecting the flipper circuit (the under playfield fuse is now gone). On the last three System7 games (Firepower2, LaserCue, Starlight), flipper power comes from a separate 50 volt flipper power supply board.
The +5 Volt Logic Filter Capacitor - Replace it Now! Filter caps are largely a mechanical device. Because of this, they wear out! The normal life span for a filter cap is about 10 years. Since these games are well past that age, I would highly recommend replacing this capacitor! On system3 to system6 power supplies, it is really important to replace it because of the lower value Williams used. System7 power supplies have less problems with this cap, but it is still a good idea to replace it. The capacitor can be tested, with the game on using a DMM set to AC voltage. Put the red lead of the DMM on the positive lead of the filter capacitor, and the black lead on the negative lead of the cap. If an AC voltage of .300 volts AC or more is seen, the capacitor is not smoothing the DC voltage enough, and definately needs to be replaced! Unfortunately on system3 to system6 power supplies that use just *two* diodes for (half wave) rectification, even with a new 5/12 volt filter cap, never less than .200 volts AC will ever be seen. On system7 power supplies this was change to a bridge rectifier (four diodes) for "full wave" rectification. A new filter capacitor on system7 power supplies should not show more than .100 volts AC.
Problems with the Backbox Mounted Bridge Rectifiers Wire Lugs.
Williams CPU Board System 6 Test Points and their Location. A Revision System6 board has a part number on the lower right corner ending in a 6 or 6A, or something similar. If the board in question does not match the location of the test points, or if the part number differs, it may be a system7 CPU board, as the test point location differs (see below). Williams CPU Board System 7 Test Points and their Location. The system7 test points are the same as system6, but their location is different. Remember some early Black Knight games (first system7 game) used the early System6 power supply. This is easy to identify; if the transformer is in the lower cabinet, it's a system7 power supply. If the transformer is in the backbox, it's a system6 power supply. A System7 CPU board has identical test point values to a System6 board, but the test points are in different locations.
The first two system3 games (Hot Tip and Lucky Seven) had two additional capacitors and diodes compared to the later system3 to system6 power supplies. These were used for the 300 volt feed for the display driver. These parts were dropped starting with World Cup (the third System3 game). Unless there is a specific problem with the display drive on these two games, the two 1N4001 diodes and two .22 mfd capacitors do not need to be replaced or checked (the capacitors are actually not electrolytics, but are "MKP" caps). They can even be removed entirely from the power supply if used in later system3 to system6 games.
Williams used two different types of transistors, and slightly different circuitry routing, for the display power supply circuitry on their games from 1977 through 1989. Commonly Defective System3 to System6 High Voltage Parts: * Note that the original style SDS201/SDS202 transistors at Q1/Q3 are no longer available in any flavor or form. These two transistors must be replaced with the newer MJE15030/MJE15031 transistors. BUT NOTE: the MJE transistors had a different pinout than the original SDS transistors, so they must be installed differently on the board!! Pinouts:
2d. Before Turning the Game On: Batteries, the Battery Holder, Battery Corrosion, and the 5101 RAM. How old are those batteries in that game? If an answer can not be determined, it's time to change them! Besides dead batteries, CPU board battery corrosion and/or a bad IC19 CMOS 5101 RAM can cause some problems too. This section talks about these problems. The problem with old batteries is leakage. If the batteries leak, they will leak corrosive material over the CPU and driver board! Also the corrosive fumes from the batteries alone can corrode the ROM sockets and the 40 pin inter-board connector. This is cause random game lock ups and resets, game boots into audit mode, or make the game not work at all.
Isn't Battery Corrosion Obvious?
If there is any battery corrosion on the CPU board, it needs to be removed immediately. If it is not properly removed, the corrosion will return, and you'll be chasing your tail! It's not worth fixing any circuit board if the battery corrosion is not removed first. Here's the procedure for removing corrosion: Game Comes up in Audit Mode.
On system4 to system7 pinballs all the game's options and audits are stored in CMOS memory (system3 is a bit different, and is explained below). If the batteries are dead, or the battery holder is damaged, or the blocking diode D17 has failed, or there's a bad IC19 RAM 5101 chip, or battery corrosion has damaged the CPU board, the game will power up into "audit mode". Audit mode is shown in the picture above, and is saying that the game has lost its CMOS memory, and there's a problem. It's a big red flag when the game is turned on, since the game goes into audit mode instead of attract mode (game over mode). Operator assistance required!
These software identification numbers made it easy to see if the wrong Game and/or Flipper ROM software was installed in the machine. Note the lack of a code above for White flipper ROMs (system3). This is because the boot-up "software revision" mode was not implemented until System4 and the Yellow flipper ROMs, when adjustment were also stored in memory (system3 used DIP switches for the adjustments, which are read by the CPU board at boot up). Williams did the audit mode routine to show instantly upon power-on that the game's adjustments/audits were lost, and that the batteries needed to be replaced. The main reason this was done was to protect the game from having garbage in an adjustment that may put the game into free play (or some other equally accidental bad mode), since now all the game's adjustments were stored in memory instead of being "hardcoded" with DIP switches. With system6 and its memory protection circuit/coin door switch, it also keep miscreants from drilling through the bottom of the game and activating the switches to change the settings (like one quarter equals 25 credits!), since the coin door now had to be open to change an adjustment/audits.
On system3 games, a dead battery or failed CMOS memory still comes up in audit mode, but there is no indication of software revisions. The audits in system3's white flipper ROMs looks a bit different too, with the audit number in the credit window, and the "04" (to signify audits) in the ball-in-play/match window (this was reverse of system4 to system7), and the audit value in the player1 score display. If the manual-down/auto-up switch is in the auto-up position, the game rotates through all the audit numbers automatically also. Because of this, system3's audit mode has a different look and feel then its later system4 to system7 cousins.
Battery Holder Woes.
Always Check Diode D17: Checking the Battery Voltage and D17 Diode. After the battery holder is replaced, install new good quality batteries. Using a DMM, then measure the voltage right at the RAM chip IC19 (5101 CMOS RAM), pin 22 (and pin 8, which is ground). This should show about 3.9 to 4.3 volts DC. On System6 and System7 CPU board, this voltage is also at test point 7. If there is not 4 volts at IC19 pin 22, check the voltage at the blocking diode D17. If there is no voltage on the banded side of D17, but there is voltage on the non-banded side, replace this diode with a new 1N4148 or 1N914 diode. If there is no voltage on the non-banded side of diode D17, then the batteries or battery holder is at fault. Also check for voltage at the CPU chip IC1 pin 8 (+5 volts pin) with the game off. If voltage is found, the D17 diode is shorted allowing the battery to power the entire CPU when the game is off. This will drain batteries in a few days. Also if this happens, the CPU board will try to charge the batteries when the game is turned on. Alkaline batteries are obviously not designed for this, and will get hot, and probably leak. If batteries are not installed in the CPU board, diode D17 can also be tested with a DMM on the diode setting. Put the black DMM lead on the banded side of the diode D17, and the red lead on the non-banded side. The DMM should read .4 to .6 volts. Reverse the DMM leads, and a null reading should be seen.
Check 5101 RAM IC19 pin 22 for Battery Voltage.
Batteries Ok but Still Powers-up in Audit Mode. Keep in mind there are two other chips involved in the memory protect circuit on sys6/7. On system6 that's IC27 (4071 CMOS) and IC12 (7808), and system7 that's IC10 (4071 CMOS) and IC12 (7808). But frankly it is very rare that either of these chips fail. More likely again it's the 5101 at IC19. Keep in mind on system3/4 there really is no memory protect circuit per se, but IC12 (7808) can fail causing a continual audit mode boot. On all System3-7 games, if the game boots into "audit" mode, try this: Turn the game on, allowing it to boot into audits. Then flick the power switch off/on quickly. This should put the game into game-over "attract" mode (on system6-7 the coin door needs to be open for this to work). This won't fix the dead 5101 chip or dead batteries, but it usually allows the game to be played in the short run. If the game still won't come up in attract mode with this trick, the 5101 RAM at IC19 is *really* dead, or the memory protect circuit has fail (IC12 or IC27/IC10). Another trick on System7 games (only) if the game boots into audit mode, is to try advancing through the audits/adjustments with the Advance button inside coin door. After the audits get to number 50 or so, it will pause, and reset the game to "game over" (attract) mode. If it doesn't come back to attract mode, but goes to audits ("04") again, try the Advance button again to move the audits past number 50 or so. If it can't get into attract (game over) mode, then there may be a bad resistor DIP network in the memory protect circuitry, in addition to a bad 5101 RAM. Note System3 to System6 did not use DIP resistor networks, and the audit would never go into attract mode (they just wrap around, back to zero, except on World Cup).
Remote Battery Holder.
Another method to test the 5101 RAM at IC19 is to use the built-in firmware diagnostics. Note this requires the game to "boot" into audit mode (or attract mode) at minimum. After the game has booted, press the lower diagnostic button on the CPU board (with the coin door open). Note what happens to the two LEDs on the CPU board. If on a system3 to system6 CPU board both of the two LEDs stays on, then the 5101 RAM at IC19 is dead for sure, and will need to be replaced. On system7, if "8" or "9" is displayed on the 7-segment LED, also 5101 RAM is also probably dead. 2e. Before Turning the Game On: 40 Pin Interboard Connector (Dead Game or Random Lockups & Resets)
If the user of the System3 to System7 game in question wants a good, dependable, working pinball, ALL of these following connector issues must be addressed!
Inter-Board Connector Woes.
The inter-board connector worked well for the first few years of a machine's life, but after years of service, connectors would start to fail. Besides getting dirty, the solder joints on both boards would develop microscopic cracks due to vibration, heat and humidity changes. If this caused one micro-second of a disconnect in a data or address line, that would be enough to lock the machine. To make matters worse, on system3 to System7 games, the batteries are located right above the 40 pin inter-board connector! If the batteries leak they will damage this connector for certain. Another little known fact is these .156" Molex connectors have a lifespan of only 25 cycles! That means after a connector has been installed and removed a number of times, the female and male connector pins are essentially worn out. Add to this time (again, these games are 20+ years old), environment and vibration, and the cycle life is probably well below the 25 cycle spec. This compromises the "gas tight" seal between the female and male pins, allowing corrosion, and hence intermittent connections. Between the female pins loosing tension and the plating on the male pins wearing from inserting and removing the connectors, they are just worn out. Now the only solution is to replace the connector pins to regain reliability.
Frankly connector replacement is the ONLY solution to a reliable game. Before even turning on one of these 20 year old machines, replace the female side of the 40 pin inter-board connectors. These are cheap parts, and replacement ensures the machine will operate reliably. Some repair people will recommend just resoldering the header pins or reseating the boards. This is not the long term solution! Heck it's not any kind of a solution. The tension on the female pins is gone after 20 years of use, and replacement of the female pins is the only choice. Replacing the male .156" header pins is usually not needed, and not recommended unless the old pins are corroded. Usually a small wire brush on the pins will fix them up nicely. New male header pins (if you need them) are now square, replacing the old style round male header pins. This increases male-to-female pin surface area, resulting in a better, more reliable connection. That's the good news. But the bad news is the new .156" male header pins are shorter than the original round male pins, and hence this is why it's not such a good idea to replace the originals. Though the new square .156" male headers will work, I would recommend not replacing them unless really needed (like say they are corroded by battery damage). Note an extra long variety of this .156" male connector are available from www.Flipperwinkel.nl Another trick if you don't have the extra long male header pins is to use the standard length .156" males. But don't solder them with the pins all the way into the circuit board hole. Solder the pins with just barely a touch of the tip showing through the back of the board. After all the pins are soldered in place, take a flat blade screwdriver, and from the component side of the board and with the board laying flat on a workbench, press the plastic housing down against the board. Doing this will give the pins another 1/8" of length, which is plenty.
"But I Re-Seated the CPU and Driver boards, and Now My Game Works..."
Het is zeker aan te raden om tenminste de connectoren die op het driverbord zitten te vervangen, de pennen op het CPU bord zijn niet of nauwelijks aan slijtage onderhevig en als ze niet zijn afgebroken of vernield door soldeerkunstenaars laat je ze gewoon zitten, evt kun je ze met een pannensponsje blinkend schoonschuren als er aanslag op zit.
Removing (Desoldering) the Old Female Connector Pins. The trick is on the female portion of the 40 pin connector. Because the plastic housing keeps all the pins together, it can be challanging to remove. A tip that Vincent suggested is to use a utility knife to cut the plastic housing, one pin at a time (see pictures below). This works pretty well because then the plastic housing can be easily removed. Then the pin can be heated with a soldering iron, and removed. Finally the pin's hole can be "solder sucked" clean, leaving a nice solder-free hole for the new female connector.
But aside from that, there are a couple tricks and cautions that should be mentioned. First, use a good quality (de)soldering station or Soldapullt tool. There are a total of 80 pin to be removed (assuming both the CPU and Driver board connectors are replaced), so don't mess around with solder wick. Also the two outside pins on each board (pins 1,2 and pins 39,40) will be the most difficult to desolder. This happens because these pairs of pins are connected together (they are ground and +5 volts lines), and hence they have larger solder pads and more solder on them. This will dissipate the (de)soldering iron's heat very easily, making them more difficult to get to a high enough temperature to desolder. Just keep that in mind, as more heat may be needed for desoldering these pins.
Double Soldering the Male Pins.
With the connector hanging over the edge of a work surface, use a rubber mallet and gently hammer the pins down thru the CPU until they protrude about 1/2 inch out the bottom (solder side) of the CPU board. Then lift the male connectors back up to their "stock" position. What this does is move the plastic housing around the male pins further up the pins. Now comes the "double solder" part. On the top of the CPU board, solder under the plastic connector and solder the pins to the pads on the top (component) side of the CPU board. Also solder the male pins on the solder (bottom) side of the CPU board. Now push the plastic housing back down as far as it will go. This "double soldering" gives a much more reliable connection for the male header pins to the CPU board.
2f. Before Turning the Game On: Power Connectors (Dead Game or Random Lockups & Resets) If 95% of the connector problems lie with the interboard connector, the other 5% lie in the power connectors! The logic bus connectors supply +5 volts, ground, and unregulated 12 volts (called "unregulated 5 volts" by Williams once it hits the CPU board) from the power supply to the CPU/driver board. This includes two .156" Molex single line connectors, one on the CPU board (1J2), and one on the power supply board (3J6). Both of these connectors male headers should be replaced, along with it associated connector housing pins (be sure to replace with "trifurcon" terminal pins). Again, like the 40 pin inter-board connector, there really is no exception to this rule. The 1J2 CPU connector and 3J6 power supply connector supplies the logic current that runs the game. The most common problem is the 12 volt unregulated power (unregulated 5 volts after a zener diode on the CPU board). There is only ONE pin per connector handling this voltage (unlike the +5 volts and ground, which have a minimum of three pins each). If this single 12 volt pin fails (and it will fail!), the game can lock up randomly, or not run at all.
The CPU board connector 1J2 is a nine pin .156" header male connector. The originals use round pins. Be sure to replace with the newer square pin variety. In the plastic housing use new .156" Trifurcon terminal pins. This applies to all System3 to System7 games. On Firepower and later games, replace the original IDC connector terminal pins and housing with new crimp-on trifurcon connector pins and plastic housing.
Replace the header pins at connector 3J6 on the power supply. The power supply board connector 3J6 is a 15 pin .156" header style. This applies to all System3 to System7 games. This is the +5 volt connector, and it needs to be in perfect condition. So just replace this with new .156" header pins before even powering the game on for the first time. In the plastic housing use new .156" Trifurcon terminal pins. Again on Firepower and later games, replace the original IDC connector terminal pins and housing with new crimp-on trifurcon connector pins and plastic housing.
Always replace the connector pins with a crimp-on style pin. Never use IDC (Insulation Displacement Connector) pins. Be sure to buy a hand crimping tool like the Molex WHT-1921 (part# 11-01-0015), Molex part# 63811-1000, Amp 725, or Radio Shack #64-410. Most System3 to System6 games used crimp-on connectors. But with Firepower, Williams changed to IDC (Insulation Displacement Connector) style connectors. These connectors are excellent for production, but are *terrible* in the long run. If replacing connectors on a Firepower or later game, always replace these with crimp-on Trifurcon connector terminal pins (a new plastic connector housing will also be required to replace the IDC connector housing). The crimp-on plastic connector housings can be reused when replacing the terminal pins. Unfortunately the IDC plastic housings can not be adapted to use crimp-on pins, and the IDC housings must be replaced with crimp-on housings. To remove the old connector terminal pins, on the sides of the connectors are slots with small metal "tabs". Press these down with a small screw driver, and the wires/pins should pull out easily from the housing. Do one pin at a time, and replace the pin with a brand new Trifurcon crimp-on .156" terminal pin. Do *not* replace with the Insulation Displacement Connector (IDC) style terminal pin! Only use crimp-on Trifurcon pins, as documented below. More info on pinball connectors, how to crimp, why IDC is bad, and other pinball related connector information is avaialble at marvin3m.com/connect.
Check the Other Connectors.
.156" Male Molex Connector Pins and Housing. These are used for the non-interboard connectors (such as the power, lamp and switch matrix, and solenoid plugs), and can be cut to the number of pins needed. I buy the header pins and white plastic housings in a single long length, and cut it to size. Below are the exact part numbers for the number of pins needed.
Polarized Pegs.
Burnt General Illumination Power Supply Plugs.
Resoldering Board Header Pins. As described above, insertion, vibration, temperature and humidity can cause microscopic cracks in the header pin's solder joints. This can cause the CPU board to lock up randomly. A quick solution is to resolder the header pins. The first trick in doing a proper resolder job is to REMOVE THE OLD SOLDER! Now this may sound really anal, but it must be done. The old solder is often flawed with corrosion, dirt and other crud. If the old solder is just reflowed, often a solder "donut" will appear around the connector pin, where the old solder (or even newly added solder) just will not stick to the pin. Because of this, use the desoldering method of your choice (see), and remove the old solder. Then solder with fresh new solder. The rosin flux in the new solder is often the added ingredient needed to make the new solder really stick to the old header pins. Be careful when soldering so adjacent pins are not "bridged" and shorted together.
Removing Connectors.
Connector Inspection.
Sometimes the two square plug power supply connectors 3J1 and 3J2 get damaged also. These connectors were used on Williams power supplies system3 to system7 (and also system 11b and DataEast/Sega power supply until 1995). The six pin 3J2 is a ground connector, and usually does not get damaged. But the twelve pin 3J1 handles all the input voltages from the transformer to the power supply, so sometimes it gets burned. Finding the part numbers for these connectors was difficult, as they were designed in 1971! So here are the part numbers for these wafer style, mixed pin connectors.
Removing the Boards from the Backbox. The CPU board sits in a tray, which somewhat locks it into place. Make sure the CPU board is still in the tray when peeling apart the CPU and Driver boards. Also notice when taking the boards apart, how much the driver board flexes during this operation. The more times the boards are separated, the more chances that a small break will occur in the connector solder joints.
Installing the Boards. Once the boards are back together, reattach the boards to the backbox with at least two screws each. Then reconnect all of the header connectors on both boards. 2g. Before Turning the Game On: Circuit Board Sockets (Dead Game or Random Lockups & Resets)
The CPU board has the bulk of the sockets: One 40 pin socket for the CPU chip, and usually three to seven 24 pin sockets for the game's EPROM and RAM chips. Most of the time the driver board has no factory installed sockets (but if there are any, be sure to replace them!) There really is NO EXCEPTION to this rule. Even if the CPU board in question does not have Scanbe sockets, chances are good they are dead. There are only so many insertion/removals a socket will take before it is worn out. And on these Williams system3 to system7 games, worn out sockets can cause serious problems, locking on coils and ruining other circuit board components in the process. The sound (and speech board, if the game has one) will also have sockets, for the EPROMs (24 pin) and CPU (40 pin) chips. Again, if these are the closed frame (Scanbe) variety, they will need to be replaced too. Though the sound board sockets are not as critical as the CPU board sockets, it's still a good idea to replace them.
Do I really Have to Replace All those Sockets?
"I Re-Seated the Chips, and My Game Now Works..."
Check out marvin3m.com/begin for the recommended soldering and desoldering tools and techniques. But for most of these old sockets, the plastic frame on the component side of the circuit board can be pried up with a small screw driver. After getting the black plastic frame up, the sockets legs should be exposed on the circuit board (be sure to check that the screw driver did not damage/cut any circuit board traces).
After the circuit board's solder hole is clear of the old socket leg, a Soldapult solder-sucker can be used to clear the the solder from the circuit board hole. Sometimes removing the socket's leg with pliers can be skipped, using the Soldapult to remove both the old solder and the old socket leg (do this from the component side of the board). After all the socket legs are removed, and the circuit board holes are clear, sand the area with some 220 grit sand paper. Now carefully examine the area. Are any traces lifted or broken? Use a DMM set to continuity and double check. Remember nearly all the personality ROM chips legs "daisy chain" together, so testing is easy between ROM sockets with the DMM's continuity feature.
Use Good Quality Sockets.
Socket Installation Tip.
Solder Flux Removal. The easiest way to remove the solder flux is to use an old toothbrush and some 90% (or better) Isopropyl alcohol. Just put the alcohol on the board and use the toothbrush to scrub the flux off. It only takes a minute, and the alcohol dries quickly leaving a nice clean board.
* Ga naar deel 2 * Ga naar deel 3 |